Answer:
factor that the electron's probability of tunneling through the barrier increase 2.02029
Explanation:
given data
kinetic energy = 10.1 eV
height = 18.2 eV
width = 1.00 nm
wavelength = 546 nm
solution
we know that probability of tunneling is express as
probability of tunneling = [tex]e^{-2CL}[/tex] .................1
here C is = [tex]\frac{\sqrt{2m(U-E}}{h}[/tex]
here h is Planck's constant
c = [tex]\frac{\sqrt{2\times 9.11 \times 10^{-31} (18.2-10.1) \times (1.60 \times 10^{-19}}}{6.626\times 10^{-34}}[/tex]
c = 2319130863.06
and proton have hf = [tex]\frac{hc}{\lambda } = {1240}{546}[/tex] = 2.27 ev
so electron K.E = 10.1 + 2.27
KE = 12.37 eV
so decay coefficient inside barrier is
c' = [tex]\frac{\sqrt{2m(U-E}}{h}[/tex]
c' = [tex]\frac{\sqrt{2\times 9.11 \times 10^{-31} (18.2-12.37) \times (1.60 \times 10^{-19}}}{6.626\times 10^{-34}}[/tex]
c' = 1967510340
so
the factor of incerease in transmisson probability is
probability = [tex]e^{2L(c-c')}[/tex]
probability = [tex]e^{2\times 1\times 10^{-9} \times (351620523.06)}[/tex]
factor probability = 2.02029