Respuesta :
Answer:
the final state of the hydrogen atom = 3
Explanation:
From the given information;
Let first calculate the amount of energy by the ground state atom during the atoms absorbs photon light by using the formula:
[tex]E_{absorbs} = \dfrac{hc}{\lambda}[/tex]
where;
h = planck's constant = [tex]6.626*10^{-34 }\ \ Js[/tex]
c = speed of light = [tex]3.0*10^8 \ \ m/s[/tex]
λ = wavelength = 92.57 nm = 92.57 × 10⁻⁹ m
[tex]E_{absorbs} = \dfrac{6.626*10^{-34 }\ \ Js * 3.0*10^8 \ \ m/s}{92.57*10^{-9} \ \ m}[/tex]
[tex]E_{absorbs} = 2.15 *10^{-18} \ J[/tex]
The energy emitted by the hydrogen atom is calculated by using the same formula from above ; but here , the wavelength λ = 954.3 nm = 954.3 × 10⁻⁹ m
[tex]E_{absorbs} = \dfrac{6.626*10^{-34 }\ \ Js * 3.0*10^8 \ \ m/s}{954.3*10^{-9} \ \ m}[/tex]
[tex]E_{absorbs} = 2.08 *10^{-19} \ J[/tex]
The change in the energy absorbed is:
[tex]\Delta E= 2.15 *10^{-18} \ J - 2.08 *10^{-19} \ J[/tex]
[tex]\Delta E= 1.94 *10^{-18} \ J[/tex]
The final state of the atom can be determined by using the relation:
[tex]\Delta E = R_H [\dfrac{1}{1^2}-\dfrac{1}{n^2_f}][/tex]
where;
[tex]R_H[/tex] = Rydberg constant = 2.18 × 10⁻¹⁸ J
[tex]\dfrac{\Delta E}{R_H} = [\dfrac{1}{1^2}-\dfrac{1}{n^2_f}] \\ \\ \\ \dfrac{1.94*10^{-18} \ J}{2.18*10^{-18} \ J } = [\dfrac{1}{1^2}-\dfrac{1}{n^2_f}] \\ \\ \\ 0.889 = [\dfrac{1}{1^2}-\dfrac{1}{n^2_f}] \\ \\ \\ 1 - 0.889 = \dfrac{1}{n^2_f} \\ \\ \\ 0.111= \dfrac{1}{n^2_f} \\ \\ \\ {n^2_f} = \dfrac{1}{0.111} \\ \\ \\ {n^2_f} = 9 \\ \\ \\ {n_f} = \sqrt{9} \\ \\ \\ \mathbf{n_f = 3}[/tex]
Thus; the final state of the hydrogen atom = 3