Answer: Part 1: Propellant Fraction (MR) = 8.76
Part 2: Propellant Fraction (MR) = 1.63
Explanation: The Ideal Rocket Equation is given by:
Δv = [tex]v_{ex}.ln(\frac{m_{f}}{m_{e}} )[/tex]
Where:
[tex]v_{ex}[/tex] is relationship between exhaust velocity and specific impulse
[tex]\frac{m_{f}}{m_{e}}[/tex] is the porpellant fraction, also written as MR.
The relationship [tex]v_{ex}[/tex] is: [tex]v_{ex} = g_{0}.Isp[/tex]
To determine the fraction:
Δv = [tex]v_{ex}.ln(\frac{m_{f}}{m_{e}} )[/tex]
[tex]ln(MR) = \frac{v}{v_{ex}}[/tex]
Knowing that change in velocity is Δv = 9.6km/s and [tex]g_{0}[/tex] = 9.81m/s²
Note: Velocity and gravity have different measures, so to cancel them out, transform km in m by multiplying velocity by 10³.
Part 1: Isp = 450s
[tex]ln(MR) = \frac{v}{v_{ex}}[/tex]
ln(MR) = [tex]\frac{9.6.10^{3}}{9.81.450}[/tex]
ln (MR) = 2.17
MR = [tex]e^{2.17}[/tex]
MR = 8.76
Part 2: Isp = 2000s
[tex]ln(MR) = \frac{v}{v_{ex}}[/tex]
ln (MR) = [tex]\frac{9.6.10^{3}}{9.81.2.10^{3}}[/tex]
ln (MR) = 0.49
MR = [tex]e^{0.49}[/tex]
MR = 1.63