Answer:
[tex] x = \dfrac{7 \pm 3i\sqrt{3}}{2} [/tex]
Step-by-step explanation:
(x – 5)^2 + 3(x – 5) + 9 = 0
This is a quadratic equation in x - 5.
Let u = x - 5, then the quadratic equation becomes:
u^2 + 3u + 9 = 0
We can use the quadratic formula to solve for u.
[tex] u = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} [/tex]
[tex] u = \dfrac{-3 \pm \sqrt{3^2 - 4(1)(9)}}{2(1)} [/tex]
[tex] u = \dfrac{-3 \pm \sqrt{9 - 36}}{2} [/tex]
[tex] u = \dfrac{-3 \pm \sqrt{-27}}{2} [/tex]
[tex] u = \dfrac{-3 \pm 3i\sqrt{3}}{2} [/tex]
Since u = x - 5, now we substitute x - 5 for u and solve for x.
[tex] x - 5 = \dfrac{-3 \pm 3i\sqrt{3}}{2} [/tex]
[tex] x = \dfrac{-3 \pm 3i\sqrt{3}}{2} + 5 [/tex]
[tex] x = \dfrac{-3 \pm 3i\sqrt{3}}{2} + \dfrac{10}{2} [/tex]
[tex] x = \dfrac{7 \pm 3i\sqrt{3}}{2} [/tex]