Answer:
Explanation:
Given that
Mass of 1 = [tex]m_1[/tex]
Mass of 2 = [tex]m_2[/tex]
Temperature in 1 = [tex]T_1[/tex]
Temperature in 2 = [tex]T_2[/tex]
Pressure remains i the group apartment
The closed system and energy balance is
[tex]E_{in}-E_{out}=\Delta E_{system}[/tex]
The kinetic energy and potential energy are negligible
since it is insulated tank ,there wont be eat transfer from the system
And there is no work involved
[tex]\Delta U = 0[/tex]
Let the final temperature be final temperature
[tex]m_1+c_v(T_3-T_1)+m_2c_v(T_3+T_2)=0\\\\m_1+c_v(T_3-T_1)=m_2c_v(T_2-T_3)---(i)[/tex]
Using mass balance
[tex]m_3+m_2+m_1[/tex]
from eqn i
[tex]m_1+c_v(T_3-T_1)=m_2c_v(T_2-T_3)m_1T_3-m_1T_1=m_2T_2-m_2T_3\\\\m_1T_3+m_2T_3=m_2T_2+m_1T_1\\\\(m_1+m_2)T_3=m_1T_1+m_2T_2\\\\(m_1)T_3=m_1T_1+m_2T_2\\\\T_3=\frac{m_1T_1_m_2T_2}{m_3}[/tex]
Therefore the final temperature can be express as
[tex]\large \boxed {T_3=\frac{m_1}{m_3} T_1+\frac{m_2}{m_3}T_2 }[/tex]