Respuesta :
Answer:
The pressure is [tex]p_1 = 4051.4 \ Pa[/tex]
Explanation:
From the question we are told that
The gauge pressure at the mouth is [tex]p_1[/tex]
The radius of the column is [tex]r_2 = 4 \ mm = 0.004 \ m[/tex]
The speed of the liquid outside the body is [tex]v_2 = 3.1 \ m/s[/tex]
The area of the column is [tex]A_2[/tex]
The area inside the mouth [tex]A_1 = 10 A_2[/tex]
Generally according to continuity equation
[tex]v_1 A_1 = v_2 A_2[/tex]
=> [tex]v_ 1 = v_2 * \frac{A_2}{A_1}[/tex]
=> [tex]v_ 1 = 3.1 * \frac{1}{10}[/tex]
=> [tex]v_ 1 = 0.31 \ m/s[/tex]
So
[tex]A_1 = 10A_2[/tex]
=> [tex]\pi * r_1^2 = 10(\pi * r_2^2)[/tex]
=> [tex]r_1 = 10 * r_2[/tex]
substituting values
[tex]r_1 = 10 * 0.004[/tex]
[tex]r_1 =0.04 \ m[/tex]
Now the height of inside the mouth is [tex]h_1 = d = 2r_1 = 2* 0.04 = 0.08\ m[/tex]
Now the height of the column is [tex]h_2 = d = 2r_2 = 2* 0.004 = 0.008\ m[/tex]
Generally according to Bernoulli's equation
[tex]p_1 = [\frac{1}{2} \rho v_2^2 + h_2 \rho g +p_2] -[\frac{1}{2} \rho * v_1^2 + h_1 \rho g ][/tex]
Now [tex]\rho = 1000 \ kg m^{-3}[/tex] which is the density of water
[tex]p_2[/tex] is the gauge pressure of the atmosphere which is zero
So
[tex]p_1 = [(0.5 * 1000 * (3.1)^2) +(0.008 * 1000 * 9.8) + 0]-[/tex]
[tex][(0.5 * 1000 * 0.31^2) + (0.08*1000 * 9.8)][/tex]
[tex]p_1 = 4051.4 \ Pa[/tex]
The initial pressure of the gauge pressure at the mouth is 4757 pascals.
The principle of continuity equation asserts that in a steady flow state, the quantity of fluid flowing at the inlet is equivalent to the quantity of fluid at the outlet given that there is a constant mass flow rate.
It can be expressed by using the formula:
[tex]\mathbf{A_1v_1=A_2v_2}[/tex]
where;
- The speed of the liquid inside the body is [tex]\mathbf{v_1}[/tex] = ???
- The speed of the liquid outside the body is [tex]\mathbf{v_2}[/tex] = 3.1 m/s
- Area outside the column is = A₂
- Area inside the column is [tex]\mathbf{A_1}[/tex] = 10A₂
∴
Making v₁ the subject of the formula:
[tex]\mathbf{v_1 = \dfrac{A_2}{A_1}\times v_2}[/tex]
[tex]\mathbf{v_1 = \dfrac{1}{10}\times3.1}[/tex]
[tex]\mathbf{v_1 =0.31 \ m/s}[/tex]
Since the area are equivalent to each other
[tex]\mathbf{A_1 = 10A_2}[/tex]
[tex]\mathbf{\pi r^2_1 = 10\times \pi r^2_2}[/tex]
[tex]\mathbf{ r^2_1 = 10\times r^2_2}[/tex]
where;
- r₂ = radius of the column. = 4mm = 0.004 m
∴
[tex]\mathbf{ r_1 = 10\times 0.004}[/tex]
[tex]\mathbf{ r^2_1 = 0.04 \ m}[/tex]
However, in fluid dynamics, Bernoulli's equation can be applied for the estimation of the initial gauge pressure by using the expression:
[tex]\mathbf{\dfrac{1}{2} \rho v_1^2 + h_1 \rho g + p_1 = \dfrac{1}{2}\rhov_2^2 + h_2 \rho g +p_2}[/tex]
Since the gauge pressure of the atmosphere [tex]\mathbf{p_2}[/tex] = 0
∴
The initial gauge pressure applied at the mouth can be determined as:
[tex]\mathbf{p_1 = \dfrac{1}{2} \rho ( v_2^2-v_1^2)}[/tex]
here;
[tex]\mathbf{\rho = 1000 \ kg/m^3}[/tex]
[tex]\mathbf{p_1 = \dfrac{1}{2} \times 1000 \ kg/m^3 ( 3.1^2-0.31^2)}[/tex]
[tex]\mathbf{p_1 =500 \ kg/m^3 (9.5139)}[/tex]
[tex]\mathbf{p_1 =4756.95 \ Pa}[/tex]
[tex]\mathbf{p_1 \simeq4757 \ Pa}[/tex]
Learn more about the principle of continuity equation here:
https://brainly.com/question/14619396