According to Oxford Dictionaries, a spit take is an act of suddenly spitting out liquid one is drinking in response to something funny or surprising. In spit takes, a gauge pressure is applied in the mouth, p1, so that liquid flows through pursed lips forming a column of liquid with radius r2 = 4 mm. If the liquid travels at v2 = 3.1 m/s outside the body, and if the column's area is 10x larger inside the mouth, what is p1 in Pa?

Respuesta :

Answer:

The pressure is [tex]p_1 = 4051.4 \ Pa[/tex]

Explanation:

From the question we are told that

     The gauge pressure at the mouth is  [tex]p_1[/tex]

     The radius of the column is  [tex]r_2 = 4 \ mm = 0.004 \ m[/tex]

    The speed of the liquid outside the body is  [tex]v_2 = 3.1 \ m/s[/tex]

      The area of the column is  [tex]A_2[/tex]

       The area inside the mouth [tex]A_1 = 10 A_2[/tex]

Generally according to continuity equation

       [tex]v_1 A_1 = v_2 A_2[/tex]

=>       [tex]v_ 1 = v_2 * \frac{A_2}{A_1}[/tex]

=>      [tex]v_ 1 = 3.1 * \frac{1}{10}[/tex]

=>        [tex]v_ 1 = 0.31 \ m/s[/tex]

So

      [tex]A_1 = 10A_2[/tex]

=>   [tex]\pi * r_1^2 = 10(\pi * r_2^2)[/tex]

=>   [tex]r_1 = 10 * r_2[/tex]

substituting values

        [tex]r_1 = 10 * 0.004[/tex]

        [tex]r_1 =0.04 \ m[/tex]

Now the height of inside the mouth is  [tex]h_1 = d = 2r_1 = 2* 0.04 = 0.08\ m[/tex]

Now the height of the column is  [tex]h_2 = d = 2r_2 = 2* 0.004 = 0.008\ m[/tex]

Generally according to Bernoulli's  equation

        [tex]p_1 = [\frac{1}{2} \rho v_2^2 + h_2 \rho g +p_2] -[\frac{1}{2} \rho * v_1^2 + h_1 \rho g ][/tex]

Now  [tex]\rho = 1000 \ kg m^{-3}[/tex] which is the density of water

        [tex]p_2[/tex] is the gauge pressure of the atmosphere which is  zero

 So

       [tex]p_1 = [(0.5 * 1000 * (3.1)^2) +(0.008 * 1000 * 9.8) + 0]-[/tex]

                                                  [tex][(0.5 * 1000 * 0.31^2) + (0.08*1000 * 9.8)][/tex]                          

       [tex]p_1 = 4051.4 \ Pa[/tex]

The initial pressure of the gauge pressure at the mouth is 4757 pascals.

The principle of continuity equation asserts that in a steady flow state, the quantity of fluid flowing at the inlet is equivalent to the quantity of fluid at the outlet given that there is a constant mass flow rate.

It can be expressed by using the formula:

[tex]\mathbf{A_1v_1=A_2v_2}[/tex]

where;

  • The speed of the liquid inside the body is [tex]\mathbf{v_1}[/tex] = ???
  • The speed of the liquid outside the body is [tex]\mathbf{v_2}[/tex] = 3.1 m/s
  • Area outside the column is = A₂
  • Area inside the column is [tex]\mathbf{A_1}[/tex] = 10A₂

Making v₁ the subject of the formula:

[tex]\mathbf{v_1 = \dfrac{A_2}{A_1}\times v_2}[/tex]

[tex]\mathbf{v_1 = \dfrac{1}{10}\times3.1}[/tex]

[tex]\mathbf{v_1 =0.31 \ m/s}[/tex]

Since the area are equivalent to each other

[tex]\mathbf{A_1 = 10A_2}[/tex]

[tex]\mathbf{\pi r^2_1 = 10\times \pi r^2_2}[/tex]

[tex]\mathbf{ r^2_1 = 10\times r^2_2}[/tex]

where;

  • r₂ = radius of the column. = 4mm = 0.004 m

[tex]\mathbf{ r_1 = 10\times 0.004}[/tex]

[tex]\mathbf{ r^2_1 = 0.04 \ m}[/tex]

However, in fluid dynamics, Bernoulli's equation can be applied for the estimation of the initial gauge pressure by using the expression:

[tex]\mathbf{\dfrac{1}{2} \rho v_1^2 + h_1 \rho g + p_1 = \dfrac{1}{2}\rhov_2^2 + h_2 \rho g +p_2}[/tex]

Since the gauge pressure of the atmosphere [tex]\mathbf{p_2}[/tex] = 0

The initial gauge pressure applied at the mouth can be determined as:

[tex]\mathbf{p_1 = \dfrac{1}{2} \rho ( v_2^2-v_1^2)}[/tex]

here;

[tex]\mathbf{\rho = 1000 \ kg/m^3}[/tex]

[tex]\mathbf{p_1 = \dfrac{1}{2} \times 1000 \ kg/m^3 ( 3.1^2-0.31^2)}[/tex]

[tex]\mathbf{p_1 =500 \ kg/m^3 (9.5139)}[/tex]

[tex]\mathbf{p_1 =4756.95 \ Pa}[/tex]

[tex]\mathbf{p_1 \simeq4757 \ Pa}[/tex]

Learn more about the principle of continuity equation here:

https://brainly.com/question/14619396

ACCESS MORE
EDU ACCESS
Universidad de Mexico