Respuesta :
(3x - 4)(2x^2 + 2x - 1) = 3x(2x^2 + 2x - 1) - 4(2x^2 + 2x - 1) = (6x^3 + 6x^2 - 3x) - (8x^2 + 8x - 4) = 6x^3 + 6x^2 - 3x - 8x^2 - 8x + 4 = 6x^3 - 2x^2 - 11x + 4
Answer:
The final product is
[tex]6X^{3} - 14X^{2} + 5X + 4\\[/tex]
Step-by-step explanation:
The given algebraic equation
[tex]( 3X - 4) ( 2X^{2} - 2X -1)\\= 3X ( 2X^{2} - 2X -1) - 4( 2X^{2} - 2X -1)\\= 6X^{3} - 6X^{2} -3X - 8X^{2} + 8X +4\\= 6X^{3} - 14X^{2} + 5X + 4\\[/tex]