ikehinde
contestada

20cm of 0.09M solution of H2SO4. requires 30cm of NaOH for complete neutralization. Calculate the
molar concentration of NaOH. (A) 0.12M (B) 0.0018M (C) 0.012M (D) 0.0036M

Respuesta :

Answer:

Choice A: approximately [tex]0.12\; \rm M[/tex].

Explanation:

Note that the unit of concentration, [tex]\rm M[/tex], typically refers to moles per liter (that is: [tex]1\; \rm M = 1\; \rm mol\cdot L^{-1}[/tex].)

On the other hand, the volume of the two solutions in this question are apparently given in [tex]\rm cm^3[/tex], which is the same as [tex]\rm mL[/tex] (that is: [tex]1\; \rm cm^{3} = 1\; \rm mL[/tex].) Convert the unit of volume to liters:

  • [tex]V(\mathrm{H_2SO_4}) = 20\; \rm cm^{3} = 20 \times 10^{-3}\; \rm L = 0.02\; \rm L[/tex].
  • [tex]V(\mathrm{NaOH}) = 30\; \rm cm^{3} = 30 \times 10^{-3}\; \rm L = 0.03\; \rm L[/tex].

Calculate the number of moles of [tex]\rm H_2SO_4[/tex] formula units in that [tex]0.02\; \rm L[/tex] of the [tex]0.09\; \rm M[/tex] solution:

[tex]\begin{aligned}n(\mathrm{H_2SO_4}) &= c(\mathrm{H_2SO_4}) \cdot V(\mathrm{H_2SO_4})\\ &= 0.02 \; \rm L \times 0.09 \; \rm mol\cdot L^{-1} = 0.0018\; \rm mol \end{aligned}[/tex].

Note that [tex]\rm H_2SO_4[/tex] (sulfuric acid) is a diprotic acid. When one mole of [tex]\rm H_2SO_4[/tex] completely dissolves in water, two moles of [tex]\rm H^{+}[/tex] ions will be released.

On the other hand, [tex]\rm NaOH[/tex] (sodium hydroxide) is a monoprotic base. When one mole of [tex]\rm NaOH[/tex] formula units completely dissolve in water, only one mole of [tex]\rm OH^{-}[/tex] ions will be released.

[tex]\rm H^{+}[/tex] ions and [tex]\rm OH^{-}[/tex] ions neutralize each other at a one-to-one ratio. Therefore, when one mole of the diprotic acid [tex]\rm H_2SO_4[/tex] dissolves in water completely, it will take two moles of [tex]\rm OH^{-}[/tex] to neutralize that two moles of [tex]\rm H^{+}[/tex] produced. On the other hand, two moles formula units of the monoprotic base [tex]\rm NaOH[/tex] will be required to produce that two moles of [tex]\rm OH^{-}[/tex]. Therefore, [tex]\rm NaOH[/tex] and [tex]\rm H_2SO_4[/tex] formula units would neutralize each other at a two-to-one ratio.

[tex]\rm H_2SO_4 + 2\; NaOH \to Na_2SO_4 + 2\; H_2O[/tex].

[tex]\displaystyle \frac{n(\mathrm{NaOH})}{n(\mathrm{H_2SO_4})} = \frac{2}{1} = 2[/tex].

Previous calculations show that [tex]0.0018\; \rm mol[/tex] of [tex]\rm H_2SO_4[/tex] was produced. Calculate the number of moles of [tex]\rm NaOH[/tex] formula units required to neutralize that

[tex]\begin{aligned}n(\mathrm{NaOH}) &= \frac{n(\mathrm{NaOH})}{n(\mathrm{H_2SO_4})}\cdot n(\mathrm{H_2SO_4}) \\&= 2 \times 0.0018\; \rm mol = 0.0036\; \rm mol\end{aligned}[/tex].

Calculate the concentration of a [tex]0.03\; \rm L[/tex] solution that contains exactly [tex]0.0036\; \rm mol[/tex] of [tex]\rm NaOH[/tex] formula units:

[tex]\begin{aligned}c(\mathrm{NaOH}) &= \frac{n(\mathrm{NaOH})}{V(\mathrm{NaOH})} = \frac{0.0036\; \rm mol}{0.03\; \rm L} = 0.12\; \rm mol \cdot L^{-1}\end{aligned}[/tex].

ACCESS MORE