Respuesta :

Answer:

That can be factored as

(x -1  (1/3) ) * ( x +3) * (x -4/5)

and the zeroes are located at:

x = 1.33333333...   x = -3    and x = .8

Step-by-step explanation:

Answer:

[tex]\boxed{\sf \ \ \ f(x)=(x+3)(5x-4)(3x-4) \ \ \ }[/tex]

Step-by-step explanation:

We need to factorise the following function

[tex]f(x)=15 x^3+13 x^2-80 x+48[/tex]

-3 is a trivial solution, we can notice that f(-3)=0

so we can factorise by (x+3)

let s note a, b and c real and let s write

[tex]f(x)=15 x^3+13 x^2-80 x+48=(x+3)(ax^2+bx+c)[/tex]

[tex](x+3)(ax^2+bx+c) = ax^3+bx^2+cx+3ax^2+3bx+3c=ax^3+(b+3a)x^2+(3b+c)x+3c[/tex]

let s identify...

the terms in [tex]x^3[/tex]

   15 = a

the terms in [tex]x^2[/tex]

   13 = b + 3a

the terms in x

   -80 = 3b+c

the constant terms

   48 = 3c

so it comes, c=48/3=16, a = 15, b = 13-3*15=13-45=-32

so [tex]f(x)=(x+3)(15x^2-32x+16)[/tex]

[tex]\Delta=32^2-4*15*16=64[/tex]

so the roots of [tex](15x^2-32x+16)[/tex] are

[tex]\dfrac{32-8}{15*2}=\dfrac{24}{30}=\dfrac{12}{15}=\dfrac{4}{5}[/tex]

and

[tex]\dfrac{32+8}{15*2}=\dfrac{40}{30}=\dfrac{20}{15}=\dfrac{4}{3}[/tex]

so [tex]f(x)=(x+3)(5x-4)(3x-4)[/tex]

the zeros are -3, 4/5, 4/3

RELAXING NOICE
Relax