Answer:
2580 ft-lb
Step-by-step explanation:
Water leaks out of the bucket at a rate of [tex]\frac{0.15 \mathrm{lb} / \mathrm{s}}{1.5 \mathrm{ft} / \mathrm{s}}=0.1 \mathrm{lb} / \mathrm{ft}[/tex]
Work done required to pull the bucket to the top of the well is given by integral
[tex]W=\int_{a}^{b} F(x) dx[/tex]
Here, function [tex]F(x)[/tex] is the total weight of the bucket and water [tex]x[/tex] feet above the bottom of the well. That is,
[tex]F(x)=4+(42-0.1 x)[/tex]
[tex]=46-0.1x[/tex]
[tex]a[/tex] is the initial height and [tex]b[/tex] is the maximum height of well. That is,
[tex]a=0 \text { and } b=60[/tex]
Find the work done as,
[tex]W=\int_{a}^{b} F(x) d x[/tex]
[tex]=\int_{0}^{60}(46-0.1 x) dx[/tex]
[tex]&\left.=46x-0.05 x^{2}\right]_{0}^{60}[/tex]
[tex]=(2760-180)-0[[/tex]
[tex]=2580 \mathrm{ft}-\mathrm{lb} [/tex]
Hence, the work done required to pull the bucket to the top of the well is [tex]2580 \mathrm{ft}- \mathrm{lb}[/tex]