Answer:
Explanation:
Given that,
The length of the beam L = 3.10m
The mass of the steam beam [tex]m_1[/tex] = 430kg
The mass of worker [tex]m_2[/tex] = 69.0kg
The distance from the fixed point to centre of gravity of beam = [tex]\frac{L}{2}[/tex]
and our length of beam is 3.10m
so the distance from the fixed point to centre of gravity of beam is
[tex]\frac{3.10}{2}=1.55m[/tex]
Then the net torque is
[tex]=-W_sL'-W_wL\\\\=-(W_sL'+W_wL)[/tex]
[tex]W_s[/tex] is the weight of steel rod
[tex]=430\times9.8=4214N[/tex]
[tex]W_w[/tex] is the weight of the worker
[tex]=69\times9.8\\\\=676.2N[/tex]
Torque can now be calculated
[tex]-(4214\times1.55+676.2\times3.9)Nm\\\\-(6531.7+2637.18)Nm\\\\-(9168.88)Nm[/tex]
≅ 9169Nm