Answer:
There is not enough evidence to conclude that the data supports the idea that more than 50% of people plan on voting for the levy
Step-by-step explanation:
Sample size, n = 150
Number of people that plan on voting for the levy, X = 78
Proportion of people that plan on voting for the levy:
[tex]\bar{p} = X/n\\\bar{p} = 78/150\\\bar{p} = 0.52[/tex]
The study is to determine whether or not the data supports the idea that more than 50%(0.5) of people plan on voting for the levy
The null and alternative hypotheses are:
[tex]H_0: p \leq 0.5\\H_a: p > 0.5[/tex]
Calculate the test statistics:
[tex]t_s = \frac{\bar{p} - p}{\sqrt{\frac{p(1-p)}{n} } } \\t_s = \frac{0.52-0.5}{\sqrt{\frac{0.5(1-0.5)}{150} } } \\t_s = 0.49[/tex]
For a test statistic [tex]t_s = 0.49[/tex], the p-value = 0.3121
The significance value, [tex]\alpha = 0.10[/tex]
Since the p-value(0.3121) is greater than α(0.10), the null hypothesis [tex]H_0[/tex] will be accepted.
This means that there is not enough evidence to conclude that the data supports the idea that more than 50% of people plan on voting for the levy