Respuesta :
Answer:
a) [tex]W_{in} = 214.286\,J[/tex], b) [tex]W_{in} = 428.571\,J[/tex]
Explanation:
a) The performance of a Carnot heat pump is determined by the Coefficient of Performance, which is equal to the following ratio:
[tex]COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}[/tex]
Where:
[tex]T_{L}[/tex] - Temperature of surroundings, measured in Kelvin.
[tex]T_{H}[/tex] - Temperature of the house, measured in Kelvin.
Given that [tex]T_{H} = 294\,K[/tex] and [tex]T_{L} = 273\,K[/tex]. The Coefficient of Performance is:
[tex]COP_{HP} = \frac{294\,K}{294\,K-273\,K}[/tex]
[tex]COP_{HP} = 14[/tex]
Besides, the performance of real heat pumps are determined by the following form of the Coefficient of Performance, that is, the ratio of heat received by the house to input work.
[tex]COP_{HP} = \frac{Q_{H}}{W_{in}}[/tex]
The input work to deliver a determined amount of heat to the house:
[tex]W_{in} = \frac{Q_{H}}{COP_{HP}}[/tex]
If [tex]Q_{H} = 3000\,J[/tex] and [tex]COP_{HP} = 14[/tex], the input work that is needed is:
[tex]W_{in} = \frac{3000\,J}{14}[/tex]
[tex]W_{in} = 214.286\,J[/tex]
b) The performance of a Carnot heat pump is determined by the Coefficient of Performance, which is equal to the following ratio:
[tex]COP_{HP} = \frac{T_{H}}{T_{H}-T_{L}}[/tex]
Where:
[tex]T_{L}[/tex] - Temperature of surroundings, measured in Kelvin.
[tex]T_{H}[/tex] - Temperature of the house, measured in Kelvin.
Given that [tex]T_{H} = 294\,K[/tex] and [tex]T_{L} = 252\,K[/tex]. The Coefficient of Performance is:
[tex]COP_{HP} = \frac{294\,K}{294\,K-252\,K}[/tex]
[tex]COP_{HP} = 7[/tex]
Besides, the performance of real heat pumps are determined by the following form of the Coefficient of Performance, that is, the ratio of heat received by the house to input work.
[tex]COP_{HP} = \frac{Q_{H}}{W_{in}}[/tex]
The input work to deliver a determined amount of heat to the house:
[tex]W_{in} = \frac{Q_{H}}{COP_{HP}}[/tex]
If [tex]Q_{H} = 3000\,J[/tex] and [tex]COP_{HP} = 7[/tex], the input work that is needed is:
[tex]W_{in} = \frac{3000\,J}{7}[/tex]
[tex]W_{in} = 428.571\,J[/tex]