Respuesta :
Answer:
[tex]y(x)=c_1cos(5x)+c_2sin(5x)+0.1xsin(5x)-0.1xcos(5x)[/tex]
Step-by-step explanation:
The general solution will be the sum of the complementary solution and the particular solution:
[tex]y(x)=y_c(x)+y_p(x)[/tex]
In order to find the complementary solution you need to solve:
[tex]y''+25y=0[/tex]
Using the characteristic equation, we may have three cases:
Real roots:
[tex]y(x)=c_1e^{r_1x} +c_2e^{r_2x}[/tex]
Repeated roots:
[tex]y(x)=c_1e^{rx} +c_2xe^{rx}[/tex]
Complex roots:
[tex]y(x)=c_1e^{\lambda x}cos(\mu x) +c_2e^{\lambda x}sin(\mu x)\\\\Where:\\\\r_1_,_2=\lambda \pm \mu i[/tex]
Hence:
[tex]r^{2} +25=0[/tex]
Solving for [tex]r[/tex] :
[tex]r=\pm5i[/tex]
Since we got complex roots, the complementary solution will be given by:
[tex]y_c(x)=c_1cos(5x)+c_2sin(5x)[/tex]
Now using undetermined coefficients, the particular solution is of the form:
[tex]y_p=x(a_1cos(5x)+a_2sin(5x) )[/tex]
Note: [tex]y_p[/tex] was multiplied by x to account for [tex]cos(5x)[/tex] and [tex]sin(5x)[/tex] in the complementary solution.
Find the second derivative of [tex]y_p[/tex] in order to find the constants [tex]a_1[/tex] and [tex]a_2[/tex] :
[tex]y_p''(x)=10a_2cos(5x)-25a_1xcos(5x)-10a_1sin(5x)-25a_2xsin(5x)[/tex]
Substitute the particular solution into the differential equation:
[tex]10a_2cos(5x)-25a_1xcos(5x)-10a_1sin(5x)-25a_2xsin(5x)+25(a_1xcos(5x)+a_2xsin(5x))=cos(5x)+sin(5x)[/tex]
Simplifying:
[tex]10a_2cos(5x)-10a_1sin(5x)=cos(5x)+sin(5x)[/tex]
Equate the coefficients of [tex]cos(5x)[/tex] and [tex]sin(5x)[/tex] on both sides of the equation:
[tex]10a_2=1\\\\-10a_1=1[/tex]
So:
[tex]a_2=\frac{1}{10} =0.1\\\\a_1=-\frac{1}{10} =-0.1[/tex]
Substitute the value of the constants into the particular equation:
[tex]y_p(x)=-0.1xa_1cos(5x)+0.1xsin(5x)[/tex]
Therefore, the general solution is:
[tex]y(x)=y_c(x)+y_p(x)[/tex]
[tex]y(x)=c_1cos(5x)+c_2sin(5x)+0.1xsin(5x)-0.1xcos(5x)[/tex]