contestada

how do you solve dy/dx=(y−1)(y+1) if the solution passes through the point (x,y)=(4,0)(x,y)=(4,0)?

I got y=(1+e^(2x-8))/(1-e^(2x-8)) but it was wrong:(

Respuesta :

The solution to the differential equation is:

[tex]y = \frac{1 - e^{2x - 8}}{1 + e^{2x - 8}}[/tex]

What is the differential equation?

It is given by:

[tex]\frac{dy}{dx} = (y - 1)(y + 1)[/tex]

Applying separation of variables, we have that:

[tex]\frac{dy}{(y - 1)(y + 1)} = dx[/tex]

[tex]\int \frac{dy}{(y - 1)(y + 1)} = \int dx[/tex]

For the first integral, we use partial fractions, that is:

[tex]\int \frac{dy}{(y - 1)(y + 1)} = \int \frac{A}{y - 1} dy + \int \frac{B}{y + 1} dy[/tex]

In which:

[tex]A = \frac{1}{y+1}_{y = 1} = \frac{1}{2}[/tex]

[tex]B = \frac{1}{y - 1}_{y = -1} = -\frac{1}{2}[/tex]

Then:

[tex]\int \frac{dy}{(y - 1)(y + 1)} = \int \frac{1}{2(y - 1)} dy - \int \frac{1}{2(y + 1)} dy[/tex]

[tex]\int \frac{dy}{(y - 1)(y + 1)} = \frac{1}{2}\ln{(y - 1)} - \frac{1}{2}\ln{(y + 1)} = \frac{1}{2}(\ln{(y - 1)} - \ln{(y + 1)})[/tex]

Then, coming back to the separation of variables:

[tex]\frac{1}{2}(\ln{(y - 1)} - \ln{(y + 1)}) = x + K[/tex]

In which K is the constant of integration.

Then:

[tex]2x + K = \ln{(y - 1)} - \ln{(y + 1)}[/tex]

[tex]2x + K = \ln{\frac{y - 1}{y + 1}}[/tex]

[tex]e^{2x + K} = e^{\ln{\frac{y - 1}{y + 1}}}[/tex]

[tex]Ke^{2x} = \frac{y - 1}{y + 1}[/tex]

Since it passes through point (4,0), when [tex]x = 4, y = 0[/tex], and this is used to find K.

[tex]Ke^{8} = \frac{0 - 1}{0 + 1}[/tex]

[tex]K = -e^{-8}[/tex]

Then:

[tex]Ke^{2x} = \frac{y - 1}{y + 1}[/tex]

[tex]-e^{-8}e^{2x} = \frac{y - 1}{y + 1}[/tex]

[tex]-e^{2x - 8} = \frac{y - 1}{y + 1}[/tex]

[tex]y - 1 = -ye^{2x - 8} - e^{2x - 8}[/tex]

[tex]y + ye^{2x - 8} = 1 - e^{2x - 8}[/tex]

[tex]y(1 + e^{2x - 8}) = 1 - e^{2x - 8}[/tex]

[tex]y = \frac{1 - e^{2x - 8}}{1 + e^{2x - 8}}[/tex]

You can learn more about differential equations at https://brainly.com/question/14318343