Answer:
[tex]P(1539<X<1580)=P(\frac{1539-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{1580-\mu}{\sigma})=P(\frac{1539-1400}{100}<Z<\frac{1580-1400}{100})=P(1.39<z<1.8)[/tex]
And we can find this probability using the normal standard table with this difference:
[tex]P(1.39<z<1.80)=P(z<1.80)-P(z<1.39)= 0.9641-0.9177=0.0464[/tex]
Step-by-step explanation:
Let X the random variable that represent the weights of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(1539,1580)[/tex]
Where [tex]\mu=1400[/tex] and [tex]\sigma=\sqrt{10000}= 100[/tex]
We are interested on this probability
[tex]P(1539<X<1580)[/tex]
And we can solve the problem using the z score formula given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
Using this formula we got:
[tex]P(1539<X<1580)=P(\frac{1539-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{1580-\mu}{\sigma})=P(\frac{1539-1400}{100}<Z<\frac{1580-1400}{100})=P(1.39<z<1.8)[/tex]
And we can find this probability using the normal standard table with this difference:
[tex]P(1.39<z<1.80)=P(z<1.80)-P(z<1.39)= 0.9641-0.9177=0.0464[/tex]