Respuesta :
Answer:
Step-by-step explanation:
Hello!
Given the independent variable X and the dependent variable Y (see data in attachment)
The regression equation is
^Y= b₀ + bX
Where
b₀= estimation of the y-intercept
b= estimation of the slope
The formulas to manually calculate both estimations are:
[tex]b= \frac{sumXY-\frac{(sumX)(sumY)}{n} }{sumX^2-\frac{(sumX)^2}{n} }[/tex]
[tex]b_0= \frac{}{y} - b*\frac{}{x}[/tex]
n=7
∑X= 42
∑X²= 292
∑Y= 49
∑Y²= 403
∑XY= 249
[tex]\frac{}{y} = \frac{sumY}{n} = \frac{49}{7} = 7[/tex]
[tex]\frac{}{x} = \frac{sumX}{n} = \frac{42}{7} = 6[/tex]
[tex]b= \frac{249-\frac{42*49}{7} }{292-\frac{42^2}{7} }= -1.13[/tex]
[tex]b_0= 7- (-1.13)*6= 13.75[/tex]
^Y= 13.75 - 1.13X
Using the raw data you can calculate the coefficient of determination as:
[tex]R^2= \frac{b^2[sumX^2-\frac{(sumX)^2}{n} ]}{[sumY^2-\frac{(sumY)^2}{n} ]}[/tex]
[tex]R^2= \frac{(-1.13)^2[292-\frac{(42)^2}{7} ]}{[403-\frac{(49)^2}{7} ]}= 0.84[/tex]
This means that 84% of the variability of the dependent variable Y is explained by the response variable X under the model ^Y= 13.75 - 1.13X
I hope this helps!
