Respuesta :
Answer:
[tex]d_2=3.16cm[/tex]
Explanation:
So, in order to solve this problem, we must start by building a diagram of the problem itself. (See attached picture) And together with the diagram, we must build a free body diagram, which will include the forces that are being applied on the given charged particle together with their directions.
In this case we only care about the x-direction of the force, since the y-forces cancel each other. So if we do a sum of forces on the x-direction, we get the following:
[tex]\sum{F_{x}}=0[/tex]
so:
[Tex]-F_{12}+F_{13x}+F_{14x}=0[/tex]
Since [tex]F_{13x}=F_{14x}[/tex] we can simplify the equation as:
[tex]-F_{12}+2F_{13x}=0[/tex]
we can now solve this for [tex]F_{12}[/tex] so we get:
[tex]F_{12}=2F_{13x}[/tex]
Now we can substitute with the electrostatic force formula, so we get:
[tex]k_{e}\frac{q_{1}q_{2}}{r_{12}^{2}}=2k_{e}\frac{q_{1}q_{3}}{r_{13}^{2}}cos \theta[/tex]
We can cancel [tex]k_{e}[/tex] and [tex]q_{1}[/tex]
so the simplified equation is:
[tex]\frac{q_{2}}{r_{12}^{2}}=2\frac{q_{3}}{r_{13}^{2}}cos \theta[/tex]
From the given diagram we know that:
[tex]cos \theta = \frac{d_{1}}{r_{13}}[/tex]
so when solving for [tex]r_{13}[/tex] we get:
[tex]r_{13}=\frac{d_{1}}{cos\theta}[/tex]
and if we square both sides of the equation, we get:
[tex]r_{13}^{2}=\frac{d_{1}^{2}}{cos^{2}\theta}[/tex]
and we can substitute this into our equation:
[tex]\frac{q_{2}}{r_{12}^{2}}=2\frac{q_{3}}{d_{1}^{2}}cos^{3} \theta[/tex]
so we can now solve this for [tex]r_{12}[/tex] so we get:
[tex]r_{12}=\sqrt{\frac{d_{1}^{2}q_{2}}{2q_{3}cos^{3}\theta}}[/tex]
which can be rewritten as:
[tex]r_{12}=d_{1}\sqrt{\frac{q_{2}}{2q_{3}cos^{3}\theta}}[/tex]
and now we can substitute values.
[tex]r_{12}=(3cm)\sqrt{\frac{7x10^{-19}C}{2(2x10^{-19}C)cos^{3}(20^{o})}}[/tex]
which solves to:
[tex]r_{12}=6.16cm[/tex]
now, we must find [tex]d_{2}[/tex] by using the following equation:
[tex]r_{12}=d_{1}+d_{2}[/tex]
when solving for [tex]d_{2}[/tex] we get:
[tex]d_{2}=r_{12}-d_{1}[/tex]
when substituting we get:
[tex]d_{2}=6.16cm-3cm[/tex]
so:
[tex]d_{2}=3.16cm[/tex]
