Respuesta :
Answer:
the endurance strength [tex]S_e[/tex] = 421.24 MPa
Explanation:
From the given information; The objective is to estimate the endurance strength, Se, in MPa .
To do that; let's for see the expression that shows the relationship between the ultimate tensile strength and Brinell hardness number .
It is expressed as:
[tex]200 \leq H_B \leq 450[/tex]
[tex]S_{ut} = 3.41 H_B[/tex]
where;
[tex]H_B[/tex] = Brinell hardness number
[tex]S_{ut}[/tex] = Ultimate tensile strength
From ;
[tex]S_{ut} = 3.41 H_B[/tex]; replace 290 for [tex]H_B[/tex] ; we have
[tex]S_{ut} = 3.41 (290)[/tex]
[tex]S_{ut} =[/tex] 988.9 MPa
We can see that the derived value for the ultimate tensile strength when the Brinell harness number = 290 is less than 1400 MPa ( i.e it is 988.9 MPa)
So; we can say
[tex]S_{ut} < 1400[/tex]
The Endurance limit can be represented by the formula:
[tex]S_e ' = 0.5 S_{ut}[/tex]
[tex]S_e ' = 0.5 (988.9)[/tex]
[tex]S_e '[/tex] = 494.45 MPa
Using Table 6.2 for parameter for Marin Surface modification factor. The value for a and b are derived; which are :
a = 1.58
b = -0.085
The value of the surface factor can be calculate by using the equation
[tex]k_a = aS^b_{ut}[/tex]
[tex]K_a = 1.58 (988.9)^{-0.085[/tex]
[tex]K_a = 0.8792[/tex]
The formula that is used to determine the value of [tex]k_b[/tex] for the rotating shaft of size factor d = 10 mm is as follows:
[tex]k_b = 1.24d^{-0.107}[/tex]
[tex]k_b = 1.24(10)^{-0.107}[/tex]
[tex]k_b = 0.969[/tex]
Finally; the the endurance strength, Se, in MPa if the rod is used in rotating bending is determined by using the expression;
[tex]S_e =k_ak_b S' _e[/tex]
[tex]S_e[/tex]= 0.8792×0.969×494.45
[tex]S_e[/tex] = 421.24 MPa
Thus; the endurance strength [tex]S_e[/tex] = 421.24 MPa