if f(x) = 4 – x2 and g(x) = 6x, which expression is equivalent to (g – f)(3)? a: 6 – 3 – (4 3)2 b: 6 – 3 – (4 – 32) c: 6(3) – 4 32 d:6(3) – 4 – 32

Respuesta :

f(x) = 4 - x^2
g(x) = 6x
(g - f)(x) = 6x - (4 - x^2)
(g - f)(3) = 6(3) - (4 - 3^2) = 6(3) - 4 + 3^2

Answer:

Option c is correct

[tex]6(3) - 4 +3^2[/tex]

Step-by-step explanation:

Given the functions:

[tex]f(x) = 4-x^2[/tex]

[tex]g(x) = 6x[/tex]

We have to find [tex](g-f)(3)[/tex].

[tex](g-f)(3) = g(3) -f(3)[/tex]

Substitute x = 3 in the given functions we have;

[tex]f(3) = 4 -3^2[/tex]

[tex]g(3) = 6(3)[/tex]

Substitute these we have;

[tex](g-f)(3) = 6(3) - (4 -3^2)[/tex]

⇒[tex](g-f)(3) = 6(3) - 4 +3^2[/tex]

Therefore, the value of [tex](g-f)(3)[/tex] is, [tex]6(3) - 4 +3^2[/tex]