Respuesta :
Answer:
The slope of the line is 3 and the y-intercept is (3/2) three-halves.
Step-by-step explanation:
The data provided is:
X Y
-1.0 -1.5
-0.5 0.0
0.0 1.5
0.5 3.0
The slope of the linear function is denoted by, b and the intercept is denoted by, a.
The formula to compute the slope and intercept are:
[tex]a &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} \\\\b &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2}[/tex]
Compute the values required in Excel.
Compute the slope and intercept as follows:
[tex]a &= \frac{\sum{Y} \cdot \sum{X^2} - \sum{X} \cdot \sum{XY} }{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 3 \cdot 1.5 - (-1) \cdot 3}{ 4 \cdot 1.5 - (-1)^2} \approx \frac{3}{2} \\ \\b &= \frac{ n \cdot \sum{XY} - \sum{X} \cdot \sum{Y}}{n \cdot \sum{X^2} - \left(\sum{X}\right)^2} = \frac{ 4 \cdot 3 - (-1) \cdot 3 }{ 4 \cdot 1.5 - \left( -1 \right)^2} \approx 3\end{aligned}[/tex]
Thus, the slope of the line is 3 and the y-intercept is (3/2) three-halves.

Answer:
D: The slope is 3, and the y-intercept is 3/2
Step-by-step explanation:
I got it correct on Edge 2020