Answer:
[tex]\theta = 216[/tex]
Step-by-step explanation:
Given
Area of Sector : Area of Circle = 3 : 5
Required
Determine the central angle
The question implies that
[tex]\frac{Area_{sector}}{Area_{circle}} = \frac{3}{5}[/tex]
Multiply both sides by 5
[tex]5 * \frac{Area_{sector}}{Area_{circle}} = \frac{3}{5} * 5[/tex]
[tex]5 * \frac{Area_{sector}}{Area_{circle}} = 3[/tex]
Multiply both sides by Area{circle}
[tex]5 * \frac{Area_{sector}}{Area_{circle}} * Area_{circle} = 3 * Area_{circle}[/tex]
[tex]5 * {Area_{sector} = 3 * Area_{circle}[/tex]
Substitute the areas of sector and circle with their respective formulas;
[tex]Area_{sector} =\frac{\theta}{360} * \pi r^2[/tex]
[tex]Area_{circle} = \pi r^2[/tex]
So, we have
[tex]5 * \frac{\theta}{360} * \pi r^2 = 3 * \pi r^2[/tex]
Divide both sides by [tex]\pi r^2[/tex]
[tex]5 * \frac{\theta}{360} * \frac{ \pi r^2}{\pi r^2} = 3 * \frac{\pi r^2}{\pi r^2}[/tex]
[tex]5 * \frac{\theta}{360} = 3[/tex]
Multiply both sides by 360
[tex]360 * 5 * \frac{\theta}{360} = 3 * 360[/tex]
[tex]5 * \theta = 3 * 360[/tex]
Divide both sides by 5
[tex]\frac{5 * \theta}{5} = \frac{3 * 360}{5}[/tex]
[tex]\theta = \frac{3 * 360}{5}[/tex]
[tex]\theta = \frac{1080}{5}[/tex]
[tex]\theta = 216[/tex]
Hence, the central angle is 216 degrees