Answer:
The correct answer will be:
(a) 2.884 m/s
(b) 0.4 s
(c) 1.154 m
(d) 4.867 m/s
Explanation:
The given values are:
Mass, m = 500 g
on converting:
m = 0.5 kg
Force constant, k = 1200 N
Height, h = 0.8 m
x = 0.1 m
(a)...
As we know,
Kinetic Energy,
[tex]KE=\frac{1}{2}kx^2 -mgh[/tex]
On putting the estimated values, we get
[tex]=\frac{1}{2}\times 1200\times (0.1)^2-0.5\times 9.8\times 0.8[/tex]
[tex]=6-3.92[/tex]
[tex]=2.08 \ J[/tex]
Now,
[tex]\frac{1}{2}mu^2=2.08[/tex]
[tex]\frac{1}{2}\times 0.5\times u^2=2.08[/tex]
[tex]u^2=8.32[/tex]
[tex]u=\sqrt{8.32}[/tex]
[tex]u=2.884 \ m/s[/tex]
(b)...
[tex]T=\sqrt{\frac{2h}{g} }[/tex]
On putting the values, we get
[tex]=\sqrt{\frac{2\times 0.8}{9.8}}[/tex]
[tex]=0.4 \ seconds[/tex]
(c)...
[tex]d=uT[/tex]
On putting the estimated values, we get
[tex]=2.884\times 0.4[/tex]
[tex]=1.154 \ m[/tex]
(d)...
[tex]V_{x}=u=2.884[/tex]
[tex]V_{y}=gT[/tex]
[tex]=9.8\times 0.4[/tex]
[tex]=3.92[/tex]
Now,
[tex]V=\sqrt{V_{x}^2+V_{y}^2}[/tex]
On putting the estimated values, we get
[tex]=\sqrt{(2.884)^2+(3.92)^2}[/tex]
[tex]=\sqrt{8.317456+15.3664}[/tex]
[tex]=\sqrt{23.684}[/tex]
[tex]=4.867 \ m/s[/tex]