Answer: [tex]\Delta H=[(1\times B.E_{C\equiv C})+(2\times B.E_{C-H})}+(2\times B.E_{H-H}) ]-[(1\times B.E_{C-C})+(6\times B.E_{C-H})][/tex]
Explanation:
The balanced chemical reaction is:
[tex]H-C\equiv C-H(g)+2H_2(g)\rightarrow CH_3-CH_3(g)[/tex]
The expression for enthalpy change is,
[tex]\Delta H=\sum [n\times B.E(reactant)]-\sum [n\times B.E(product)][/tex]
[tex]\Delta H=[(n_{H-C\equiv C-H}\times B.E_{H-C\equiv C-H})+(n_{H_2}\times B.E_{H_2}) ]-[(n_{CH_3-CH_3}\times B.E_{CH_3-CH_3})][/tex]
[tex]\Delta H=[(1\times B.E_{C\equiv C})+(2\times B.E_{C-H})}+(2\times B.E_{H-H}) ]-[(1\times B.E_{C-C})+(6\times B.E_{C-H})][/tex]
where,
n = number of moles
Thus the equation for determining the bond dissociation energy ΔH° for the hydrogenation of acetylene is [tex]\Delta H=[(1\times B.E_{C\equivC})+(2\times B.E_{C-H})}+(2\times B.E_{H-H}) ]-[(1\times B.E_{C-C})+(6\times B.E_{C-H})][/tex]