Answer:
0.1575 m/s^2
Explanation:
Solution:-
- Acceleration ( a ) is expressed as the rate of change of velocity ( v ).
- We are given that the trains starts from rest i.e the initial velocity ( vo ) is equal to 0. Then the train travels from reference point ( so = 0 ) to ( sf = 5.6 km ) from the reference.
- During the travel the train accelerated uniformly to a speed of ( vf =42 m/s ).
- We will employ the use of 3rd kinematic equation of motion valid for constant acceleration ( a ) as follows:
[tex]v_f^2 = v_i^2 + 2*a*( s_f - s_o )[/tex]
- We will plug in the given parameters in the equation of motion given above:
[tex]42^2 = 0^2 + 2*a* ( 5600 - 0 )\\\\1764 = 11,200*a\\\\a = \frac{1,764}{11,200} \\\\a = 0.1575 \frac{m}{s^2}[/tex]
Answer: the acceleration during the first 5.6 km of travel is 0.1575 m / s^2