Answer:
There is a probability of 86.6% that the sample mean falls within 0.03 percent of the raw purity mean.
Step-by-step explanation:
We have a population standard deviation of σ ≈ 0.1.
We have a sample of size n=25.
Then, we have a sampling distribution, which has a standard deviation for the sample mean that is:
[tex]\sigma_s=\dfrac{\sigma}{\sqrt{n}}=\dfrac{0.1}{\sqrt{25}}=\dfrac{0.1}{5}=0.02[/tex]
Now, we can calculate a z-score for a deviation of 0.03 percent from the mean as:
[tex]z=\dfrac{X-\mu}{\sigma}=\dfrac{0.03}{0.02}=\dfrac{0.03}{0.02}=1.5[/tex]
Note: we considered that the margin is ±0.03.
Then, the probability is:
[tex]P(|X-\mu|<0.03\%)=P(|z|<1.5)=0.866[/tex]