Answer:
[tex] P(0.34 <\hat p<0.49)[/tex]
And the distribution for the sample proportion is given by;
[tex]\hat p \sim N(p, \sqrt{\frac{p(1-p)}{n}})[/tex]
And we can find the mean and deviation for the sample proportion:
[te]\mu_{\hat p}= 0.36[/tex]
[tex]\sigma_{\hat p} =\sqrt{\frac{0.36(1-0.36)}{195}}= 0.0344[/tex]
And we can use the z score formula given by:
[tex] z = \frac{0.34 -0.36}{0.0344}= -0.582[/tex]
[tex] z = \frac{0.49 -0.36}{0.0344}= 3.782[/tex]
And we can use the normal distribution table and we got:
[tex] P(-0.582 <z< 3.782) =P(z<3.782)-P(z<-0.582)=0.99992-0.2803= 0.71962[/tex]
Step-by-step explanation:
For this case we know that the sample size is n =195 and the probability of success is p=0.36.
We want to find the following probability:
[tex] P(0.34 <\hat p<0.49)[/tex]
And the distribution for the sample proportion is given by;
[tex]\hat p \sim N(p, \sqrt{\frac{p(1-p)}{n}})[/tex]
And we can find the mean and deviation for the sample proportion:
[tex]\mu_{\hat p}= 0.36[/tex]
[tex]\sigma_{\hat p} =\sqrt{\frac{0.36(1-0.36)}{195}}= 0.0344[/tex]
And we can use the z score formula given by:
[tex] z = \frac{0.34 -0.36}{0.0344}= -0.582[/tex]
[tex] z = \frac{0.49 -0.36}{0.0344}= 3.782[/tex]
And we can use the normal distribution table and we got:
[tex] P(-0.582 <z< 3.782) =P(z<3.782)-P(z<-0.582)=0.99992-0.2803= 0.71962[/tex]