contestada

a gas obeys the equation of state p(v-b)=RT.for the gas b=0.0391L/mol.calculate the fugacity coefficient for the gas at 1000°c and 1000atm

Respuesta :

Answer:

The fugacity coefficient is  [tex][\frac{f}{p} ] = 1.45[/tex]

Explanation:

From the question we are told that

  The gas obeys the equation [tex]p(v-b) = RT[/tex]

   The value  of b is  [tex]b = b = 0.0391 \ L /mol[/tex]

   The pressure is  [tex]p = 1000 \ atm[/tex]

    The temperature is [tex]T= 1000^oC = 1273 K[/tex]

generally

        [tex]RT ln[\frac{f}{p} ] = \int\limits^{p}_{o} [ {v_{r} -v_{i}} ]\, dp[/tex]

Where  [tex]\frac{f}{p}[/tex] is the fugacity coefficient

          [tex]v_r[/tex] is the real volume which is mathematically evaluated from above equation  as

           [tex]v_r = \frac{RT}{p} + b[/tex]

           [tex]v_r = \frac{RT}{p} + 0.0391[/tex]

and     [tex]v_{i}[/tex] is the ideal volume which is evaluated from the ideal gas equation (pv = nRT , at  n= 1) as

         [tex]v_{i} = \frac{RT}{p}[/tex]

So

     [tex]RT ln[\frac{f}{p} ] = \int\limits^{1000}_{o} [[ \frac{RT}{p} + 0.0391] - [\frac{RT}{p} ]} ]\, dp[/tex]

=>      [tex]RT ln[\frac{f}{p} ] = \int\limits^{1000}_{o} [0.391 ]\, dp[/tex]

=>    [tex]RT ln[\frac{f}{p} ] = [0.391p]\left | 1000} \atop {0}} \right.[/tex]

=>   [tex]RT ln[\frac{f}{p} ] = 38.1[/tex]

   So

         [tex]ln[\frac{f}{p} ] = \frac{39.1}{RT}[/tex]

Where R is the gas constant with value [tex]R = 0.082057\ L \cdot atm \cdot mol^{-1}\cdot K^{-1}[/tex]

         [tex][\frac{f}{p} ] = \frac{39.1}{ 2.303 *0.082057 * 1273}[/tex]

        [tex][\frac{f}{p} ] = 1.45[/tex]

       

               

ACCESS MORE