Respuesta :
Answer:
The fugacity coefficient is [tex][\frac{f}{p} ] = 1.45[/tex]
Explanation:
From the question we are told that
The gas obeys the equation [tex]p(v-b) = RT[/tex]
The value of b is [tex]b = b = 0.0391 \ L /mol[/tex]
The pressure is [tex]p = 1000 \ atm[/tex]
The temperature is [tex]T= 1000^oC = 1273 K[/tex]
generally
[tex]RT ln[\frac{f}{p} ] = \int\limits^{p}_{o} [ {v_{r} -v_{i}} ]\, dp[/tex]
Where [tex]\frac{f}{p}[/tex] is the fugacity coefficient
[tex]v_r[/tex] is the real volume which is mathematically evaluated from above equation as
[tex]v_r = \frac{RT}{p} + b[/tex]
[tex]v_r = \frac{RT}{p} + 0.0391[/tex]
and [tex]v_{i}[/tex] is the ideal volume which is evaluated from the ideal gas equation (pv = nRT , at n= 1) as
[tex]v_{i} = \frac{RT}{p}[/tex]
So
[tex]RT ln[\frac{f}{p} ] = \int\limits^{1000}_{o} [[ \frac{RT}{p} + 0.0391] - [\frac{RT}{p} ]} ]\, dp[/tex]
=> [tex]RT ln[\frac{f}{p} ] = \int\limits^{1000}_{o} [0.391 ]\, dp[/tex]
=> [tex]RT ln[\frac{f}{p} ] = [0.391p]\left | 1000} \atop {0}} \right.[/tex]
=> [tex]RT ln[\frac{f}{p} ] = 38.1[/tex]
So
[tex]ln[\frac{f}{p} ] = \frac{39.1}{RT}[/tex]
Where R is the gas constant with value [tex]R = 0.082057\ L \cdot atm \cdot mol^{-1}\cdot K^{-1}[/tex]
[tex][\frac{f}{p} ] = \frac{39.1}{ 2.303 *0.082057 * 1273}[/tex]
[tex][\frac{f}{p} ] = 1.45[/tex]