The electron in a hydrogen atom, originally in level n = 8, undergoes a transition to a lower level by emitting a photon of wavelength 3745 nm. What is the final level of the electron? (c = 3.00 x 108m/s, h = 6.63 x 10−34 J • s, RH = 2.179 x 10−18 J)
a. 5
b. 6
c. 8
d. 9
e. 1

Respuesta :

Answer:

The level is  [tex]n_1 = 5[/tex]

Explanation:

From the question we are told that

  The level of the hydrogen atom is   [tex]n_2 = 8[/tex]

  The wavelength of the photon is  [tex]\lambda = 3745 nm = 3745 *10^{-9} \ m[/tex]

Generally the wave number is mathematically represented as

        [tex]k = \frac{1}{\lambda }[/tex]

Now this wave number can also be mathematically represented as

       [tex]k = R_{\infty} [\frac{1}{n_1^2} + \frac{1}{n_2^2} ][/tex]  

This implies that

     

 So  

   Here [tex]R_{\infty}[/tex] is the Rydberg constant, with a value  [tex]1.097 * 10^7[/tex]

and  [tex]n_1 \ and \ n_2[/tex]  are the principal quantum levels

 substituting values

               [tex]0.0243= [\frac{1}{n_1^2} - \frac{1}{8^2} ][/tex]  

               [tex]0.0243= \frac{1}{n_1^2} - 0.015625[/tex]  

              [tex]0.0243 + 0.015625= \frac{1}{n_1^2}[/tex]

              [tex]n_1 = 5[/tex]  

ACCESS MORE