Answer:
The answer is B.
Step-by-step explanation:
When Elimination method is applied, you have to eliminate one of the variables from both equations. Firstly, both equations contain 4y so you can subtract it :
[tex]7x + 4y = 39 - - - (1)[/tex]
[tex]2x + 4y = 14 - - - (2)[/tex]
[tex](1) - (2)[/tex]
[tex]7x + 4y - 2x - 4y = 39 - 14[/tex]
[tex]5x = 25[/tex]
[tex]x = 25 \div 5[/tex]
[tex]x = 5[/tex]
Next, you have to substitute x = 5 to any equations. I will choose to put in (2) :
[tex]substitute \: x = 5 \: into \: (2)[/tex]
[tex]2(5) + 4y = 14[/tex]
[tex]10 + 4y = 14[/tex]
[tex]4y = 14 - 10[/tex]
[tex]4y = 4[/tex]
[tex]y = 4 \div 4[/tex]
[tex]y = 1[/tex]
Therefore, put your answer in coordinate form :
[tex]x = 5 \\ y = 1[/tex]
[tex](5,1)[/tex]