Answer:
[tex]4.35$ cm^2[/tex]
Step-by-step explanation:
For the equilateral triangle in a semicircle of radius 4cm.
Side Lengths =4cm
Angles =60 degrees
[tex]\text{Area of a Triangle}=\frac{1}{2}ab\sin \theta[/tex]
Therefore, the area of one equilateral triangle
[tex]=\frac{1}{2}*4*4*\sin 60^\circ[/tex]
Area of the three equilateral triangle
[tex]=3*\frac{1}{2}*4*4*\sin 60^\circ\\=20.7846$ cm^2[/tex]
Area of the semicircle
[tex]=0.5 \times \pir^2\\=0.5 \times \pi * 4^2\\=25.1327$ cm^2[/tex]
Therefore, the area left over =Area of Semicircle -Area of Triangles
=25.1327-20.7846
=[tex]4.35$ cm^2[/tex]