Respuesta :

Answer:

[tex]4.35$ cm^2[/tex]

Step-by-step explanation:

For the equilateral triangle in a semicircle of radius 4cm.

Side Lengths =4cm

Angles =60 degrees

[tex]\text{Area of a Triangle}=\frac{1}{2}ab\sin \theta[/tex]

Therefore, the area of one equilateral triangle

[tex]=\frac{1}{2}*4*4*\sin 60^\circ[/tex]

Area of the three equilateral triangle

[tex]=3*\frac{1}{2}*4*4*\sin 60^\circ\\=20.7846$ cm^2[/tex]

Area of the semicircle

[tex]=0.5 \times \pir^2\\=0.5 \times \pi * 4^2\\=25.1327$ cm^2[/tex]

Therefore, the area left over =Area of Semicircle -Area of Triangles

=25.1327-20.7846

=[tex]4.35$ cm^2[/tex]

ACCESS MORE