Respuesta :

Answer:

angle X = angle Y = 66 degree

x = y = 11

Step-by-step explanation:

[tex]In\:\triangle WXY:\\

WX = WY ...(given)\\

\therefore m\angle X = m\angle Y....(1)\\

\therefore (6y-2)\degree= (4x+20)\degree....(2)\\[/tex]

By interior angle sum postulate of a triangle:

[tex]m\angle X +m\angle Y+m\angle W = 180\degree\\

\therefore (6y -2)\degree+ (4x+20)\degree+52\degree= 180\degree\\

\therefore (6y -2)\degree+ (4x+20)\degree= 180\degree-52\degree\\

\therefore (6y -2)\degree+ (4x+20)\degree= 128\degree.....(3)\\

From\: equations\: (2)\: and \: (3)\\

(4x+20)\degree+ (4x+20)\degree= 128\degree\\

\therefore (8x+40)\degree= 128\degree\\

\therefore 8x+40= 128\\

\therefore 8x= 128-40\\

\therefore 8x= 8\\

\therefore x= \frac{88}{8} \\

\huge\red{\boxed{\therefore x= 11}}\\\\

\because (6y-2)\degree = (4x+20)\degree\\

\therefore 6y - 2 = 4\times 11+20\\

\therefore 6y = 44 + 20 + 2\\

\therefore 6y = 66\\

\therefore y = \frac{66}{6}\\

\huge \purple{\boxed{\therefore y = 11}}\\

m\angle X = m\angle Y = (4x+20)\degree...(from \: 1)\\

\therefore m\angle X = m\angle Y = (4\times 11+20)\degree\\

\therefore m\angle X = m\angle Y = (44+20)\degree\\

\huge\orange{\boxed{\therefore m\angle X = m\angle Y = 64\degree}}\\[/tex]

ACCESS MORE