Rewrite the expression in the form of k*x^n

Answer:
[tex] 3 {x}^{ - \frac{5}{2} } [/tex]
Step-by-step explanation:
[tex]\huge \frac{12 \sqrt{x} }{4 {x}^{3} } \\ \\ \huge = \frac{3 {x}^{ \frac{1}{2} } }{ {x}^{3} } \\ \\ \huge = 3 {x}^{ \frac{1}{2} - 3} \\ \\ \huge = 3 {x}^{ \frac{1 - 2 \times 3}{2} } \\ \\ \huge = 3 {x}^{ \frac{1 - 6}{2} } \\ \\ \huge = 3 {x}^{ - \frac{5}{2} } \implies \: k {x}^{n} [/tex]