Answer: Thus the final temperature for both the mercury and the water is [tex]28.8^0C[/tex]
Explanation:
The quantity of heat required to raise the temperature of a substance by one degree Celsius is called the specific heat capacity.
[tex]heat_{released}=heat_{absorbed}[/tex]
[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]
[tex]-[m_1\times c_1\times (T_{final}-T_1)]=[m_2\times c_2\times (T_{final}-T_2)][/tex]
Q = heat absorbed or released
[tex]m_1[/tex] = mass of mercury= 452 g
[tex]m_2[/tex]= mass of water = 145 g
[tex]T_{final}[/tex] = final temperature = ?
[tex]T_1[/tex] = temperature of mercury = [tex]85.0^0C[/tex]
[tex]T_2[/tex] = temperature of water = [tex]23.0^0C[/tex]
[tex]c_1[/tex] = specific heat of mercury = [tex]0.138J/g^0C[/tex]
[tex]c_2[/tex] = specific heat of water= [tex]4.184J/g^0C[/tex]
Now put all the given values in equation (1), we get
[tex]-[452\times 0.138\times (T_f-85.0)^0C]=145\times 4.184\times (T_f-23.0)^0C[/tex]
[tex]T_f=28.8^0C[/tex]
Thus the final temperature for both the mercury and the water is [tex]28.8^0C[/tex]