Answer:
H0: [tex] \sigma^2_1 = \sigma^2_2[/tex]
H1: [tex] \sigma^2_1 \neq \sigma^2_2[/tex]
The statistic would be given by:
[tex]F=\frac{s^2_2}{s^2_1}=\frac{10}{8}=1.25[/tex]
Step-by-step explanation:
Information given
[tex]n_1 = 60 [/tex] represent the sample size 1
[tex]n_2 =40[/tex] represent the sample size 2
[tex]s^2_1 = 8[/tex] represent the sample variance 1
[tex]s^2_2 = 10[/tex] represent the sample variance 2
The statistic to check the hypothesis is given by:
[tex]F=\frac{s^2_2}{s^2_1}[/tex]
Hypothesis to test
We want to test if the two variances are equal, so the system of hypothesis are:
H0: [tex] \sigma^2_1 = \sigma^2_2[/tex]
H1: [tex] \sigma^2_1 \neq \sigma^2_2[/tex]
The statistic would be given by:
[tex]F=\frac{s^2_2}{s^2_1}=\frac{10}{8}=1.25[/tex]