Respuesta :
Answer:
[tex](C)\left(-\dfrac{1 }{2},-\dfrac{\sqrt{3} }{2} \right)$ and \left(\dfrac{1 }{2},\dfrac{\sqrt{3} }{2} \right)[/tex]
Step-by-step explanation:
The reference angle is the angle that the given angle makes with the x-axis.
For an ordered pair to share the same reference angle, the x and y coordinates must be the same or a factor of each other.
From the given options:
[tex](A)\left(-\dfrac{\sqrt{3} }{2} ,-\dfrac{1 }{2}\right)$ and \left(-\dfrac{1 }{2},-\dfrac{\sqrt{3} }{2} \right)\\\\(B)\left(\dfrac{1 }{2},-\dfrac{\sqrt{3} }{2} \right)$ and \left(-\dfrac{\sqrt{3} }{2}, \dfrac{1 }{2}\right)\\\\(C)\left(-\dfrac{1 }{2},-\dfrac{\sqrt{3} }{2} \right)$ and \left(\dfrac{1 }{2},\dfrac{\sqrt{3} }{2} \right)\\\\(D)\left(\dfrac{\sqrt{3} }{2},\dfrac{1 }{2} \right)$ and \left(\dfrac{1 }{2},\dfrac{\sqrt{3} }{2} \right)[/tex]
We observe that only the pair in option C has the same x and y coordinate with the second set of points being a negative factor of the first term. Therefore, they have the same reference angle.