Answer:
[tex]M.A.D = 1[/tex]
Step-by-step explanation:
Given
9, 7, 6, 8, 7, 5
Required
Mean Absolute Deviation
The first step is to calculate the mean of the given data;
[tex]Mean = \frac{\sum{x}}{n}[/tex]
where x = 9, 7, 6, 8, 7, 5 and n = 6
[tex]Mean = \frac{9+ 7+ 6+ 8+ 7+ 5}{6}[/tex]
[tex]Mean = \frac{42}{6}[/tex]
[tex]Mean = 7[/tex]
Subtract mean (7) from each data
[tex]9 - 7 = 2\\7 - 7 = 0\\6 - 7 = -1\\8 - 7 = 1\\7 - 7 = 0\\5 - 7 = -2[/tex]
Return the absolute values of each
[tex]|2| = 2\\|0| = 0\\|-1| = 1\\|1| = 1\\|0| = 0\\|-2| =2[/tex]
Calculate mean of the above absolute values
[tex]Mean = \frac{\sum{x}}{n}[/tex]
[tex]Mean = \frac{2+0+1+1+0+2}{6}[/tex]
[tex]Mean = \frac{6}{6}[/tex]
[tex]Mean = 1[/tex]
Hence, the mean absolute deviation of the given data is 1