Answer:
L = [tex]\frac{gT^3}{8\pi^3 }[/tex]
Step-by-step explanation:
T = 2π(L/g)^1/3
(L/g)^1/3 = [tex]\frac{T}{2\pi }[/tex]
Cube both sides to get;
L/g = [tex]\frac{T^3}{8\pi^3 }[/tex]
Multiplying both sides by g we get;
L = [tex]\frac{gT^3}{8\pi^3 }[/tex]