Respuesta :
Answer:
The value of the expression is [tex]10\sqrt{6}x^{3}y[/tex].
Step-by-step explanation:
The expression provided is:
[tex]\sqrt{5x^{3}y}\times \sqrt{10x^{3}}\times \sqrt{12y}[/tex]
It is provided that x ≥ 0 and y ≥ 0.
Rules of exponent:
[tex]a^{m}\times a^{n}=a^{m+n}[/tex]
Compute the value of the expression as follows:
[tex]\sqrt{5x^{3}y}\times \sqrt{10x^{3}}\times \sqrt{12y}=\sqrt{(5x^{3}y)\times (10x^{3})\times (12y)}[/tex]
[tex]=\sqrt{(5\times 10\times 12)\times (x^{3}\times x^{3})\times (y\times y)}\\\\=\sqrt{600\times x^{6}\times y^{2}}\\\\=\sqrt{600}\times \sqrt{x^{6}}\times \sqrt{y^{2}}\\\\=10\sqrt{6}x^{3}y[/tex]
Thus, the value of the expression is [tex]10\sqrt{6}x^{3}y[/tex].