What is the following product? Assume x greater-than-or-equal-to 0 and y greater-than-or-equal-to 0 StartRoot 5 x Superscript 8 Baseline y squared EndRoot times StartRoot 10 x cubed EndRoot times StartRoot 12 y EndRoot

Respuesta :

Answer:

The value of the expression is [tex]10\sqrt{6}x^{3}y[/tex].

Step-by-step explanation:

The expression provided is:

[tex]\sqrt{5x^{3}y}\times \sqrt{10x^{3}}\times \sqrt{12y}[/tex]

It is provided that x ≥ 0 and y ≥ 0.

Rules of exponent:

[tex]a^{m}\times a^{n}=a^{m+n}[/tex]

Compute the value of the expression as follows:

[tex]\sqrt{5x^{3}y}\times \sqrt{10x^{3}}\times \sqrt{12y}=\sqrt{(5x^{3}y)\times (10x^{3})\times (12y)}[/tex]

                                   [tex]=\sqrt{(5\times 10\times 12)\times (x^{3}\times x^{3})\times (y\times y)}\\\\=\sqrt{600\times x^{6}\times y^{2}}\\\\=\sqrt{600}\times \sqrt{x^{6}}\times \sqrt{y^{2}}\\\\=10\sqrt{6}x^{3}y[/tex]

Thus, the value of the expression is [tex]10\sqrt{6}x^{3}y[/tex].

Answer: 10x^5y √6xy or B on edge

Step-by-step explanation:

edge 2021

ACCESS MORE