Answer:
[tex]1+ 0i[/tex]
Step-by-step explanation:
A complex number is a number which has some real part and some imaginary part.
Standard form of a complex number is represented as
[tex]a +bi[/tex]
Where [tex]a[/tex] is the real part,
and [tex]bi[/tex] is the imaginary part.
And [tex]i = \sqrt{-1}[/tex]
Given complex number:
[tex]-4i+\dfrac{1}{4}-5i)-(-\dfrac{3}{4}+8i)+17i\\\Rightarrow -4i+\dfrac{1}{4}-5i + \dfrac{3}{4}-8i+17i\\\Rightarrow \dfrac{3}{4}+\dfrac{1}{4}-4i -5i-8i+17i\\\Rightarrow \dfrac{3+1}{4}-17i+17i\\\Rightarrow \dfrac{4}{4}+0i\\\Rightarrow 1 + 0i[/tex]
Hence, the standard form is [tex]1+ 0i[/tex].