Respuesta :
Answer:
Explanation:
Given that :
the diameter of the reservoir D = 18 mm
the diameter of the manometer d = 6 mm
For an equilibrium condition ; the pressure on both sides are said to be equal
∴
[tex]\Delta \ P = \rho _{water} g \Delta h_{water} = \rho _{oil} g \Delta h_{oil}[/tex]
[tex]\Delta \ P = \rho _{oil} g (x+L) ----- (1)[/tex]
According to conservation of volume:
[tex]A*x = a*L[/tex]
[tex]\dfrac{\pi}{4}D^2x = \dfrac{\pi}{4}d^2 L[/tex]
[tex]x = ( \dfrac{d}{D})^2L[/tex]
Replacing x into (1) ; we have;
[tex]\Delta \ P = \rho _{oil} g ( ( \dfrac{d}{D})^2L+L)[/tex]
[tex]\Delta \ P = \rho _{oil} g \ L ( ( \dfrac{d}{D})^2+1)[/tex]
[tex]L = \dfrac{\Delta \ P}{\rho _{oil} g \ ( ( \dfrac{d}{D})^2+1)}[/tex]
Thus; the liquid deflection is : [tex]L = \dfrac{\Delta \ P}{\rho _{oil} g \ ( ( \dfrac{d}{D})^2+1)}[/tex]
when the applied pressure is equivalent to 25 mm of water (gage); the liquid deflection is:
[tex]L = \dfrac{\Delta \ P}{\rho _{oil} g \ ( ( \dfrac{d}{D})^2+1)}[/tex]
[tex]L = \dfrac{\rho_{water} \g \Delta \ h}{\rho _{water} SG_{oil}g \ ( ( \dfrac{d}{D})^2+1)}[/tex]
[tex]L = \dfrac{\g \Delta \ h}{SG_{oil}g \ ( ( \dfrac{d}{D})^2+1)}[/tex]
[tex]L = \dfrac{25}{0.827 ( ( \dfrac{6}{18})^2+1)}[/tex]
L = 27.21 mm
