Respuesta :
We will transform the equation to the vertex form:
y = x² + 8 x + 12 = x² + 8 x + 16 - 16 + 12 =
= ( x + 4 )² - 4
Vertex form is: y = a ( x - k )² + h
Vertex coordinates are: ( - 4, - 4 ).
y = x² + 8 x + 12 = x² + 8 x + 16 - 16 + 12 =
= ( x + 4 )² - 4
Vertex form is: y = a ( x - k )² + h
Vertex coordinates are: ( - 4, - 4 ).
Answer:
(-4, -4)
Step-by-step explanation:
A quadratic equation [tex]y = ax^2+bx+c[/tex] has written in vertex form using the completing square method is:
[tex]y = a(x-h)^2+k[/tex]
where, (h, k) is the vertex
As per the statement:
[tex]y = x^2 + 8x + 12[/tex]
Using the completing square method we have;
[tex]y = x^2 + 8x + 12+(\frac{8}{2} )^2-(\frac{8}{2} )^2[/tex]
⇒[tex]y =x^2+8x+12+4^2-4^2[/tex]
Using identity rule:
[tex](a+b)^2 = a^2+2ab+b^2[/tex]
then;
[tex]y=(x+4)^2+12-16[/tex]
⇒[tex]y =(x+4)^2-4[/tex]
vertex of the given equation is: (h, k) = (-4, -4)
Therefore, the vertex of the parabola whose equation [tex]y = x^2 + 8x + 12[/tex] is (-4, -4)