Answer:
displacement x = - 0.046sin4t +0.006cos4t
Step-by-step explanation:
The model of the equation of motion is a forced motion equation and to determine the displacement of the weight as a function of time; we have:
the weight balances of the elastic force in the spring to be expressed by the relation:
mg = kx
where;
x=4 in (i.e 1/3 ft )
mass m = 6lb
let make k the subject; then:
k = mg/x = 6×32/(1/3) = 576
assuming x to be the displacement form equilibrium;
Then;
[tex]F = 27sin 4t-3cos4t +k(x+1/3) - mg -3v[/tex]
(since F(t)=27sin 4t-3cos4t somehow faces downwards, mg=downwards and k(x+1/3)= upwards and medium resistance 3v = upwards)
SO;
[tex]d2x/dt2 = 27sin 4t-3cos4t +kx - 3dx/dt[/tex]
[tex]d2x/dt2 +3dx/dt - 576x = 27sin 4t-3cos4t[/tex]
Assuming : [tex]x = asin4t + bcos4t[/tex]
[tex]dx/dt = 4acos4t - 4bsin4t[/tex]
[tex]d2x/dt2 = -16asin4t - 14bcos4t[/tex]
replacing these values in the above equation
[tex]= -16asin4t - 14bcos4t + 12acos4t - 12bsin4t -576asin4t-576bcos4t = 27sin 4t-3cos4t[/tex]
[tex]= sin4t (-592a-12b) + cos4t(12a -590b) = 27sin 4t-3cos4t[/tex]
equating sin and cos terms
a = - 0.046 ; b = 0.006
displacement x = - 0.046sin4t +0.006cos4t