Respuesta :
Answer:
The vertical acceleration when t = 325 s is -2.76 × 10⁻¹³² m/s²
Step-by-step explanation:
The relationship is given as follows;
[tex]y(t) = y_0 \cdot e^{(-\alpha t)} \times cos (\omega \cdot t)[/tex]
Where:
y₀ = 0.75 m
α = 0.95 s⁻¹
ω = 6.3 s⁻¹
Given that the velocity, v, is found by the following relation;
[tex]v = \dfrac{dy}{dt} = -\dfrac{\alpha \cdot y_0 \cdot cos(\omega \cdot t) + \omega\cdot y_0 \cdot sin(\omega \cdot t) }{e^{\alpha \cdot t} }[/tex]
The acceleration, a, can be found by differentiating the velocity with respect to time as follows;
[tex]a = \dfrac{d^2 y}{dt^2} =\dfrac{d\left (-\dfrac{\alpha \cdot y_0 \cdot cos(\omega \cdot t) + \omega\cdot y_0 \cdot sin(\omega \cdot t) }{e^{\alpha \cdot t} } \right )}{dt}[/tex]
[tex]a = {\dfrac{\left (\alpha ^2 - \omega ^2 \right )\cdot y_0 \cdot cos(\omega \cdot t) + 2 \cdot \omega\cdot \alpha \cdot y_0 \cdot sin(\omega \cdot t) }{e^{\alpha \cdot t} } }[/tex]
Which gives;
[tex]a = {\dfrac{\left (0.95 ^2 - 6.3 ^2 \right )\times 0.75 \times cos(6.3 \times 325) + 2 \times 6.3\times 0.95 \times 0.75 \times sin(6.3 \times 325) }{e^{0.95 \times 325} } }[/tex]Hence the vertical component of the acceleration is given as follows;
[tex]a_{vertical} = {\dfrac{ 2 \times 6.3\times 0.95 \times 0.75 \times sin(6.3 \times 325) }{e^{0.95 \times 325} } } = -2.76 \times 10^{-132} m/s^2[/tex]
The vertical acceleration when t = 325 s = -2.76 × 10⁻¹³² m/s².
In this exercise we have to use the knowledge of vertical acceleration to calculate the car's acceleration, so we have to:
[tex]a= -2.76 * 10^{-132} m/s^2[/tex]
The relationship is given as follows;
[tex]y(t)=y_0e^{-\alpha t}cos(wt)[/tex]
knowing that the values are:
- [tex]y_0 = 0.75 m[/tex]
- [tex]a = 0.95 s^{-1[/tex]
- [tex]w = 6.3 s^{-1[/tex]
Knowing that speed can be described by:
[tex]v= \frac{dy}{dt} = -\frac{\alpha y_0 cos(wt) +wy_0 sin(wt)}{e^{\alpha t}}[/tex]
The acceleration, can be found by differentiating the velocity with respect to time as follows;
[tex]a = \frac{d^2y}{dt^2}= \frac{(\alpha ^2-w^2) y_0 cos(wt) + 2w\alpha y_0 sin(wt)}{e^{\alpha t}}[/tex]
Replacing the known values, we find that:
[tex]a= -2.76 * 10^{-132} m/s^2[/tex]
See more about vertical acceleration at brainly.com/question/11776718