Respuesta :
Answer:
Step-by-step explanation:
Given that
[tex]\alpha =2.5[/tex] ,[tex]\beta =220[/tex]
The weibull distribution with parameters [tex]\alpha \ \ and \ \ \beta[/tex]
where [tex]\alpha =0 \ \ , \beta =0[/tex]
[tex]F(x,\alpha ,\beta) \left|\begin{array}{cc}\frac{\alpha }{\beta } x^{\alpha-1e^-(x/\beta)^\alpha &x\geq 0\\0&x<0\end{array}\right[/tex]
Then,
[tex]F(x,\alpha ,\beta )=\left|\begin{array}{cc}0&x<0\\1-e^-^{(x/\beta)}^\alpha &x\geq 0\end{array}\right[/tex]
A) The probability that a specimen's lifetime is at most 250 is
[tex]P(X\leq 250)=F(250,2.7,220)\\\\=1-e^-^(250/220)^{2.7}\\\\=1-0.2436\\\\=0.7564[/tex]
The probability that the specimen's life time is more than 300 is
[tex]P(X>300)=1-P(X\leq 300)\\\\=1-F(300;2.7,220)\\\\=1-(1-e^-^{(300/220)^{2.7}[/tex]
[tex]=e^-^{(300/220)^{2.7}[/tex]
= 0.0992
b)The probability of the specimen's lifetime is between 100 and 250
[tex]P(100<X<250)=P(X<250)-P(X<100)\\\\=F(250;2.7,220)-F(100;2.7,220)\\\\=(1-e^-^{(250/220)^2^.^7})-(1-e^-^{(100/220)^2^.^7})\\\\=(1-0.2436)-1(1-0.8878)\\\\=0.6442[/tex]
c) The value such that exactly 50% of all specimens have lifetimes exceeding that value is
[tex]P(X>x)=0.50\\\\1-P(X<x)=0.50\\\\1-(1-e^-^{(x/220)^{2.7}}=0.50\\\\e^-^{(x/220)^{2.7}}=0.50\\\\-(x/220)^{2.7}=In(0.50)\\\\(x/220)^{2.7}=-In(0.50)\\\\(x/220)=[-In(0.50)]^{(\frac{1}{2.7})} \\\\x=220[-In(0.50)]^{(\frac{1}{2.7})}[/tex]
x = 192.07