Answer:
a) [tex] \sigma = 716.85nC/m^3 [/tex]
b) [tex] \sigma = -716.85nC/m^3 [/tex]
c) i) [tex] Q = 198.157 nC [/tex]
ii) [tex] Q = 198.157 nC [/tex]
Explanation:
To find the charge density on each face, let's use the formula: E=σ/εo
Where, E, electric field = 81.0 kN/C
εo =[tex] 8.85*10^-^1^2 [/tex]
Thus, solve for σ
[tex] \sigma = 81.0*10^3 * 8.85*10^-^1^2 [/tex]
[tex] \sigma = 7.1685*10^-^7 C/m^3 [/tex] or [tex] \sigma = 716.85nC/m^3 [/tex]
In charge density, the left face is negative while on the right face it will be positive.
Therefore,
Charge density on the each face =
[tex] - 716.85nC/m^3 and 716.85nC/m^3 [/tex]
C) We'll first find the area of the square plate.
[tex] A = (51.0*10^-^2)^2 = 0.2601m^2 [/tex]
Use the formula below to find the magnitude of the charge on each surface of the plate:
On the right surface:
[tex] Q = A\sigma [/tex]
[tex] Q = 0.2601 * 761. 85[/tex]
[tex] Q = 198.157 nC [/tex]
On the left surface:
[tex] Q = A\sigma [/tex]
[tex] Q = 0.2601 * -761. 85[/tex]
[tex] Q = -198.157 nC [/tex]