Respuesta :
Answer:
[tex]V=V_p-V_cV=27.712 cm^3 - 4.019 cm^3V=23.693 cm^3V=23.6 cm^3[/tex]
Step-by-step explanation:
Given that:
Diameter of the cylinder: d=1.6 cm
Apothem of the hexagon: a=2 cm
Assuming the thickness of the steel hex nut: t=2 cm
Volume of metal in the hex nut: V=?
[tex]V=V_p-V_c[/tex]
[tex]\texttt {Volume of the prism}: V_p\\\\\texttt {Volume of the cylinder}: V_c[/tex]
Prism:
[tex]V_p=Ab h[/tex]
Ab=n L a / 2
Number of the sides: n=6
Side of the hexagon: L
Height of the prism: h=t=2 cm
Central angle in the hexagon: A=360°/n
A=360°/6
A=60°
[tex]\tan \frac{A}{2} =\frac{L}{2} / a[/tex]
[tex]\tan \frac{60}{2} =\frac{L}{2} / 2cm[/tex]
[tex]\tan 30 =\frac{L}{2} / 2cm[/tex]
[tex]\frac{\sqrt{3} }{3} =\frac{\frac{L}{2} }{2}[/tex]
[tex]2\frac{\sqrt{3} }{3} =\frac{L}{2}[/tex]
[tex]L=4\frac{\sqrt{3} }{3}[/tex]
[tex]Ab=n *L *\frac{a}{2}[/tex]
[tex]Ab=6(4\frac{\sqrt{3} }{3} )(2cm)/2[/tex]
[tex]=24\frac{\sqrt{3} }{3} cm^2\\\\=8\sqrt{3} cm^2[/tex]
[tex]V_p=Ab h[/tex]
[tex]=(8\sqrt{3} )cm^2(2cm)\\\\=16\sqrt{3} cm^3\\\\=16(1.732)cm^3\\\\=27.712cm^3[/tex]
Cylinder:
[tex]V_c=\pi\frac{d^2}{4} L[/tex]
π=3.14
d=1.6 cm
Height of the cylinder: h=t=2 cm
[tex]V_c=3.14\times\frac{1.6^2}{4} \times2\\\\=3.14\times\frac{2.56}{4} \times 2\\\\=2.0096\times2\\\\=4.019cm^3[/tex]
[tex]V=V_p-V_cV=27.712 cm^3 - 4.019 cm^3V=23.693 cm^3V=23.6 cm^3[/tex]