A steel hex nut has two regular hexagonal bases and a cylindrical hole with a diameter of 1.6 centimeters through the middle. The apothem of the hexagon is 2 centimeters. A cylinder is cut out of the middle of a hexagonal prism. The hexagon has an apothem with a length of 2 centimeters and base side lengths of 2.3 centimeters. The prism has a height of 2 centimeters. The cylinder has a diameter of 1.6 centimeters. The equation for the area of a regular hexagon = one-half (apothem) (perimeter). What is the volume of metal in the hex nut, to the nearest tenth? Use 3.14 for π. 21.1 cm3 23.6 cm3 27.6 cm3 31.6 cm3

Respuesta :

Answer:

[tex]V=V_p-V_cV=27.712 cm^3 - 4.019 cm^3V=23.693 cm^3V=23.6 cm^3[/tex]

Step-by-step explanation:

Given that:

Diameter of the cylinder: d=1.6 cm

Apothem of the hexagon: a=2 cm

Assuming the thickness of the steel hex nut: t=2 cm

Volume of metal in the hex nut: V=?

[tex]V=V_p-V_c[/tex]

[tex]\texttt {Volume of the prism}: V_p\\\\\texttt {Volume of the cylinder}: V_c[/tex]

Prism:

[tex]V_p=Ab h[/tex]

Ab=n L a / 2

Number of the sides: n=6

Side of the hexagon: L

Height of the prism: h=t=2 cm

Central angle in the hexagon: A=360°/n

A=360°/6

A=60°

[tex]\tan \frac{A}{2} =\frac{L}{2} / a[/tex]

[tex]\tan \frac{60}{2} =\frac{L}{2} / 2cm[/tex]

[tex]\tan 30 =\frac{L}{2} / 2cm[/tex]

[tex]\frac{\sqrt{3} }{3} =\frac{\frac{L}{2} }{2}[/tex]

[tex]2\frac{\sqrt{3} }{3} =\frac{L}{2}[/tex]

[tex]L=4\frac{\sqrt{3} }{3}[/tex]

[tex]Ab=n *L *\frac{a}{2}[/tex]

[tex]Ab=6(4\frac{\sqrt{3} }{3} )(2cm)/2[/tex]

[tex]=24\frac{\sqrt{3} }{3} cm^2\\\\=8\sqrt{3} cm^2[/tex]

[tex]V_p=Ab h[/tex]

[tex]=(8\sqrt{3} )cm^2(2cm)\\\\=16\sqrt{3} cm^3\\\\=16(1.732)cm^3\\\\=27.712cm^3[/tex]

Cylinder:

[tex]V_c=\pi\frac{d^2}{4} L[/tex]

π=3.14

d=1.6 cm

Height of the cylinder: h=t=2 cm

[tex]V_c=3.14\times\frac{1.6^2}{4} \times2\\\\=3.14\times\frac{2.56}{4} \times 2\\\\=2.0096\times2\\\\=4.019cm^3[/tex]

[tex]V=V_p-V_cV=27.712 cm^3 - 4.019 cm^3V=23.693 cm^3V=23.6 cm^3[/tex]

Answer:

23.6

Step-by-step explanation:

Edge 2020

ACCESS MORE