Respuesta :
Answer:
(a)[tex]A(t)=1000-1000e^{-\dfrac{t}{125}}[/tex]
(b)[tex]C(t)=2-2e^{-\dfrac{t}{125}}[/tex]
(c) C(5)=0.07842 lb/gal
(d)[tex]\lim_{t \to \infty} =2$ lb/gal[/tex]
Step-by-step explanation:
Amount of Salt in the Tank
[tex]\dfrac{dA}{dt}=R_{in}-R_{out}[/tex]
[tex]R_{in}[/tex] =(concentration of salt in inflow)(input rate of brine)
[tex]=(2\frac{lbs}{gal})( 4\frac{gal}{min})=8\frac{lbs}{min}[/tex]
[tex]R_{out}[/tex] =(concentration of salt in outflow)(output rate of brine)
[tex]=(\frac{A(t)}{500})( 4\frac{gal}{min})=\frac{A}{125}[/tex]
Therefore:
[tex]\dfrac{dA}{dt}=8-\dfrac{A}{125}[/tex]
We then solve the resulting differential equation by separation of variables.
[tex]\dfrac{dA}{dt}+\dfrac{A}{125}=8\\$The integrating factor: e^{\int \frac{1}{125}}dt =e^{\frac{t}{125}}\\$Multiplying by the integrating factor all through\\\dfrac{dA}{dt}e^{\frac{t}{125}}+\dfrac{A}{125}e^{\frac{t}{125}}=8e^{\frac{t}{125}}\\(Ae^{\frac{t}{125}})'=8e^{\frac{t}{125}}[/tex]
Taking the integral of both sides
[tex]\int(Ae^{\frac{t}{125}})'=\int 8e^{\frac{t}{125}} dt\\Ae^{\frac{t}{125}}=8*125e^{\frac{t}{125}}+C, $(C a constant of integration)\\Ae^{\frac{t}{125}}=1000e^{\frac{t}{125}}+C\\$Divide all through by e^{\frac{t}{125}}\\A(t)=1000+Ce^{-\frac{t}{125}}[/tex]
Recall that when t=0, A(t)=0 (our initial condition)
[tex]0=1000+Ce^{0}\\C=-1000\\$Therefore:\\[/tex]
[tex]A(t)=1000-1000e^{-\dfrac{t}{125}}[/tex]
(b)
Concentration c(t) of the salt in the tank at time t
Concentration, C(t)=[tex]\dfrac{Amount}{Volume}[/tex]
Therefore:
[tex]C(t)=\dfrac{1000-1000e^{-\dfrac{t}{125}}}{500}\\\\C(t)=2-2e^{-\dfrac{t}{125}}[/tex]
Therefore:
[tex]C(5)=2-2e^{-\dfrac{5}{125}}\\=0.07842$ lb/gal[/tex]
As t tends to infinity
[tex]\lim_{t \to \infty} C(t)=\lim_{t \to \infty} \left(2-2e^{-\dfrac{t}{125}}\right)=2$ lb/gal[/tex]