Respuesta :
Answer : The molar mass of fructose is 180
Explanation : Given,
Molal-freezing-point-depression constant [tex](K_f) = 1.86^oC/m[/tex]
Mass of fructose (solute) = 1.8 g
Mass of water (solvent) = 0.100 kg
Formula used :
[tex]\Delta T_f=i\times K_f\times m\\\\\Delta T_f=i\times K_f\times\frac{\text{Mass of fructose}}{\text{Molar mass of fructose}\times \text{Mass of solvent in Kg}}[/tex]
where,
[tex]\Delta T_f[/tex] = change in freezing point = [tex]0.186^oC[/tex]
i = Van't Hoff factor = 1
[tex]K_f[/tex] = freezing point constant = [tex]1.86^oC/m[/tex]
m = molality
Now put all the given values in this formula, we get
[tex]0.186^oC=1\times (1.86^oC/m)\times \frac{1.8g}{\text{Molar mass of fructose}\times 0.100kg}\\\\\text{Molar mass of fructose}=180g/mol[/tex]
Therefor, the molar mass of fructose is 180
The molar mass of fructose will be "180 g/mol". To understand the calculation check below.
Molar mass and Molality
According to the question,
Fructose mass = 1.8 g
Water's mass = 0.100 kg
Molal freezing point depression constant, [tex]K_f[/tex] = 1.86°C/m
Freezing point change, Δ[tex]T_f[/tex] = 0.186°C
Freezing point constant, [tex]K_f[/tex] = 1.86°C/m
We know the relation,
→ Δ[tex]T_f[/tex] = i × [tex]K_f[/tex] × m
or,
= i × [tex]K_f[/tex] × [tex]\frac{Fructose \ mass}{Fructose \ molar \ mass\times Solvent's \ mass}[/tex]
By substituting the values, we get
0.186 = 1 × 1.86 × [tex]\frac{1.8}{Fructose \ molar \ mass\times 0.100}[/tex]
By applying cross-multiplication,
Molar mass = 180 g/mol
Thus the above approach is right.
Find out more information about molar mass here:
https://brainly.com/question/24727597