Respuesta :
Answer:
[tex]2.03~g~Ag_2S[/tex]
Explanation:
For this question we have to start with the reaction:
[tex]Ag~+~H_2S~+~O_2~->~Ag_2S~+~H_2O[/tex]
Now, we can balance the reaction, so:
[tex]4Ag~+~2H_2S~+~O_2~->~2Ag_2S~+~2H_2O[/tex]
With this in mind, we have to start with the amount of [tex]H_2S[/tex]. The first step is to convert from grams to moles. For this, we need to find the molar mass of [tex]H_2S[/tex]. If we check the periodic table we will find the atomic masses for Ag and H; H: 1 g/mol and A: 32 g/mol, so:
(1*2)+ (32*1) = 34 g/mol.
Now we can calculate the moles of [tex]H_2S[/tex]:
[tex]0.280~g~H_2S\frac{34~g~H_2S}{1~mol~H_2S}=0.0082~mol~H_2S[/tex]
With the moles of [tex]H_2S[/tex] we can calculate the moles of [tex]Ag_2S[/tex] if we check the molar ratio in the balanced equation, [tex]2~mol~H_2S=2~mol_Ag_2S[/tex], so:
[tex]0.0082~mol~H_2S\frac{2~mol_Ag_2S}{2~mol~H_2S}=0.0082~mol~H_2S[/tex]
With the molar mass of [tex]Ag_2S[/tex] we can convert from moles to grams (Ag: 107.86 g/mol, S: 32 g/mol), so:
(107.86*1)+(32*2)=247.80 g/mol
[tex]0.0082~mol~H_2S\frac{247.8~g~Ag_2S}{1~mol~H_2S}=2.03~g~Ag_2S[/tex]
I hope it helps!